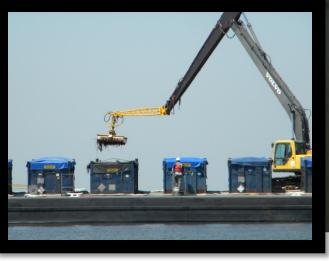
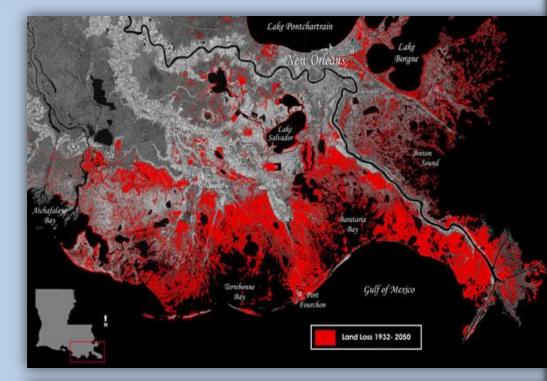
Salt marsh restoration following the Deepwater Horizon Oil Spill

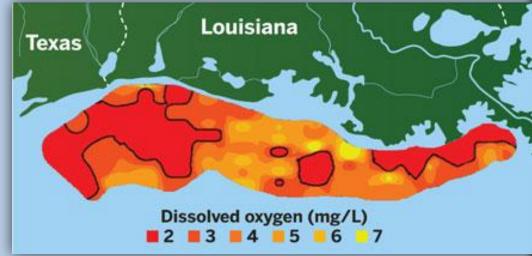
Brittany M. Bernik June 2012



Remediation

Raking, removing plant matter: decreases mass lowers elevation increases exposure to tides causes decomposition


Exacerbated land loss


Salt marshes already suffer extensive erosion

Ecosystem service damages; economic impacts

Coastal marshes provide:

- critical habitat
- fisheries
- water treatment
- flood protection
- tourism and jobs

•Data suggests S. alterniflora is robust to some degree of oiling

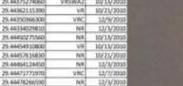
•Remediation activities are leaving shoreline cleared of vegetation

Bay Jimmy Treatment Map 23 22 21 20 19 NR VRC VRC VRC NR Bay Jimmy 18 NR URC 16 NR 29 15 M-VRIP 14 VR 13 NR 2 VREL VRVA 5 VRSWA1 А 9 VRSWA2 В Id Treatment Longitu Latitude Treat Code Treat Da 89.88901331050 29.44443491590 10/10/201 Vegetation Raking Only Vitt Vegetation Raking Followed by Flushing 89.8887872181 29.4443731917 VRFI 10/11/201 Natural Recovery 89.888571589 29.4442729916 NR. 10/13/30 Vegetation Raking Followed by Vacuum H1 KHA222946 29.44421584510 VINA 10/12/201 Vegetation Raking Followed by PES-51 And Flushing 29.44410852390 VRSWA1 10/11/2018 89 RRET 7158F Vegetation Raking Only 89.88797530 29.444071288 VR. 10/11/301 7 Vegetation Baking Only 89.887780970 29.4439270194 VR. 10/21/201 29.44382392270 NR 10/13/201 Natural Recovery **10 80757860** Vegetation Raking Followed by Cytosol and Flushing 89.8873747453 29.44375274060 /RSW/A2 10/13/201 Vegetation Baking Only 89.8871972830 29.4436211539 10/21/201 legetation Raking and Cutti 29.44350366300 12/9/30 IN BRIDDATE 12/3/20 89.8867960081 29.6673612981 0 29.4449027556 NR 10/11/20 11 Natural Recovery 14 Vegetation Raking Only 10.889405318 29.44454930800 VR. 10/13/20 Natural Recovery **85 8855864189** 29.44457535830

Natural Recovery

Natural Recovery

38 Natural Recovery


17 Vegetation Raking and Cutting

Vegetation Raking and Cutting

26.

29

20

12/1/201

12/9/201

NR

VRC

89.00977443536

85.88996263290

89.890L383779

89.89026300000

BTN. 819CH 74000000

29.44481100000

29.44483200000

11 VRC

Results

 Transplantated plants have a high rate of survival

 Plots exhibit 50-90% cover at beginning of subsequent growing season

Remaining Questions

• Long-term development, subsidence/erosion

Ecosystem consequences across genetic variation

Ecosystem consequences of genotypic identity and diversity

Ecological performance of *S. alterniflora* cultivars (Connahs, Bernik et al.)

- *S. alterniflora* genotypes are being identified and cultivated for aerial seeding of Louisiana marshes by LSU AgCenter
- Promising strategy for coastal restoration, but need for further information on ecological viability of cultivars

S. alterniflora clones at LSU Rice Research Station (www.lsuagcenter.com)

Conclusions

• Transplantation is successful post-remediation

 Could be a cost-effective remediation tool, conducted in concert with other remediation activities

Could exchange aggravated loss for improved restoration

Acknowledgements